人教版初二数学一次函数知识点总结

学习资料 2021-03-18 605

数学的学习不仅需要活跃的思维,还需要公式的掌握,在题型中正确的运用公式能够帮助同学们更好的进行计算。下面是热心网友为大家提供的人教版初二数学一次函数知识点总结,希望同学们能够掌握,打好数学学习的基础。

初二数学一次函数知识点总结 一、知识要点

1、函数概念:在一个变化过程中有两个变量x、y,如果对于x的每一个值,y都有惟一的值与它对应,那么就说x是自变量,y是x的函数.

2、一次函数和正比例函数的概念

若两个变量x,y间的关系式可以表示成y=kx+b(k,b为常数,k0)的形式,则称y是x的一次函数(x为自变量),特别地,当b=0时,称y是x的正比例函数.

说明:(1)一次函数的自变量的取值范围是一切实数,但在实际问题中要根据函数的实际意义来确定.

(2)一次函数y=kx+b(k,b为常数,b0)中的“一次”和一元一次方程、一元一次不等式中的“一次”意义相同,即自变量x的次数为1,一次项系数k必须是不为零的常数,b可为任意常数.

(3)当b=0,k0时,y=b仍是一次函数.

(4)当b=0,k=0时,它不是一次函数.

3、一次函数的图象(三步画图象)

由于一次函数y=kx+b(k,b为常数,k0)的图象是一条直线,所以一次函数y=kx+b的图象也称为直线y=kx+b.

由于两点确定一条直线,因此在今后作一次函数图象时,只要描出适合关系式的两点,再连成直线即可,一般选取两个特殊点:直线与y轴的交点(0,b),直线与x轴的交点(-,0).但也不必一定选取这两个特殊点.画正比例函数y=kx的图象时,只要描出点(0,0),(1,k)即可.

4、一次函数y=kx+b(k,b为常数,k0)的性质(正比例函数的性质略)

(1)k的正负决定直线的倾斜方向;①k>0时,y的值随x值的增大而增大;

②k﹤O时,y的值随x值的增大而减小.

(2)|k|大小决定直线的倾斜程度,即|k|越大,直线与x轴相交的锐角度数越大(直线陡),|k|越小,直线与x轴相交的锐角度数越小(直线缓);

(3)b的正、负决定直线与y轴交点的位置;

①当b>0时,直线与y轴交于正半轴上;

②当b<0时,直线与y轴交于负半轴上;

③当b=0时,直线经过原点,是正比例函数.

(4)由于k,b的符号不同,直线所经过的象限也不同;

5、确定正比例函数及一次函数表达式的条件

(1)由于正比例函数y=kx(k0)中只有一个待定系数k,故只需一个条件(如一对x,y的值或一个点)就可求得k的值.

(2)由于一次函数y=kx+b(k0)中有两个待定系数k,b,需要两个独立的条件确定两个关于k,b的方程,求得k,b的值,这两个条件通常是两个点或两对x,y的值.

6、待定系数法

先设待求函数关系式(其中含有未知常数系数),再根据条件列出方程(或方程组),求出未知系数,从而得到所求结果的方法,叫做待定系数法.其中未知系数也叫待定系数.例如:函数y=kx+b中,k,b就是待定系数.

7、用待定系数法确定一次函数表达式的一般步骤

(1)设函数表达式为y=kx+b;

(2)将已知点的坐标代入函数表达式,解方程(组);

(3)求出k与b的值,得到函数表达式.

8、本章思想方法

(1)函数方法。函数方法就是用运动、变化的观点来分析题中的数量关系,函数的实质是研究两个变量之间的对应关系。

(2)数形结合法。数形结合法是指将数与形结合,分析、研究、解决问题的一种思想方法。

二、典型例题

例1、当m为何值时,函数y=-(m-2)x+(m-4)是一次函数?

例2、一根弹簧长15cm,它所挂物体的质量不能超过18kg,并且每挂1kg的物体,弹簧就伸长0.5cm,写出挂上物体后,弹簧的长度y(cm)与所挂物体的质量x(kg)之间的函数关系式,写出自变量x的取值范围,并判断y是否是x的一次函数.

例3、(2003厦门)某物体从上午7时至下午4时的温度M(℃)是时间t(时)的函数:M=t2-5t+100(其中t=0表示中午12时,t=1表示下午1时),则上午10时此物体的温度为__℃.

例4、已知y+m与x-n成正比例(其中m,n是常数)

(1)y是x的一次函数吗?请说明理由;在什么条件下,y是x的正比例函数?

(2)如果x=-1时,y=-15;x=7时,y=1,求这个一次函数的解析式。并求这条直线与坐标轴围成的三角形的面积。

例5、(哈尔滨)若正比例函数y=(1-2m)x的图象经过点A(x1,y1)和点B(x2,y2),当x1﹤x2时,y1>y2,则m的取值范围是_____________

例6、一次函数y=kx+b的自变量x的取值范围是-36,相应函数值的取值范围是-5-2,则这个函数的解析式为.

例7、我省某水果种植场今年喜获丰收,据估计,可收获荔枝和芒果共200吨.按合同,每吨荔枝售价为人民币0.3万元,每吨芒果售价为人民币0.5万元.现设销售这两种水果的总收入为人民币y万元,荔枝的产量为x吨(0<x<200).

(1)请写出y关于x的函数关系式;

(2)若估计芒果产量不小于荔枝和芒果总产量的20%,但不大于60%,请求出y 附:初二数学一次函数知识点总结全面

初二的数学学习任务是很重的,对于数学公式的掌握也是很必要的,上文是人教版初二数学一次函数知识点总结,希望大家掌握。

文章来源于网络,如有版权问题请联系我们删除!

推荐阅读 暑期初二数学上册预习:第四章一次函数知识点归纳总结 人教版初二数学全等三角形知识点总结 浙教版初二数学下册知识点总结 初二数学重要知识点梳理总结 苏教版初二数学下册知识点总结 初二数学下册知识点归纳总结

点击访问更多木玛升学网的 学习资料资讯

上一条: 2016年秋季初二数学上册因式分解的一般步骤知识点 下一条: 人教版初二数学等腰三角形知识点归纳

网友评论 共0条

暂无数据