高一数学重要知识点【函数的单调性】

学习资料 2021-03-18 500

高一数学学习对大家来说很重要,想要取得好成绩必须要掌握好课本上的知识点,为了帮助大家掌握高一数学知识点,下面学大教育网为大家带来高一数学重要知识点【函数的单调性】,希望对大家掌握数学知识有所帮助。

1、单调函数

对于函数f(x)定义在某区间[a,b]上任意两点x1,x2,当x1>x2时,都有不等式f(x1)>(或<)f(x2)成立,称f(x)在[a,b]上单调递增(或递减);增函数或减函数统称为单调函数.

对于函数单调性的定义的理解,要注意以下三点:

(1)单调性是与“区间”紧密相关的概念.一个函数在不同的区间上可以有不同的单调性.

(2)单调性是函数在某一区间上的“整体”性质,因此定义中的x1,x2具有任意性,不能用特殊值代替.

(3)单调区间是定义域的子集,讨论单调性必须在定义域范围内.

(4)注意定义的两种等价形式:

设x1、x2∈[a,b],那么:

①在[a、b]上是增函数;

在[a、b]上是减函数.

②在[a、b]上是增函数.

在[a、b]上是减函数.

需要指出的是:①的几何意义是:增(减)函数图象上任意两点(x1,f(x1))、(x2,f(x2))连线的斜率都大于(或小于)零.

(5)由于定义都是充要性命题,因此由f(x)是增(减)函数,且(或x1>x2),这说明单调性使得自变量间的不等关系和函数值之间的不等关系可以“正逆互推”.

5、复合函数y=f[g(x)]的单调性

若u=g(x)在区间[a,b]上的单调性,与y=f(u)在[g(a),g(b)](或g(b),g(a))上的单调性相同,则复合函数y=f[g(x)]在[a,b]上单调递增;否则,单调递减.简称“同增、异减”.

在研究函数的单调性时,常需要先将函数化简,转化为讨论一些熟知函数的单调性。因此,掌握并熟记一次函数、二次函数、指数函数、对数函数的单调性,将大大缩短我们的判断过程.

6、证明函数的单调性的方法

(1)依定义进行证明.其步骤为:①任取x1、x2∈M且x1(或<)f(x2);③根据定义,得出结论.

(2)设函数y=f(x)在某区间内可导.

如果f′(x)>0,则f(x)为增函数;如果f′(x)<0,则f(x)为减函数.

学大教育网为大家带来了高一数学重要知识点【函数的单调性】,希望大家能够熟记这些数学知识点,更多的高一数学知识点请查阅学大教育网。

文章来源于网络,如有版权问题请联系我们删除!

推荐阅读 高一数学:函数单调性问题 高一数学重要知识点【映射、函数、反函数】 高一数学重要知识点【函数的图象】 高一数学重要知识点【函数的奇偶性】 高一数学重要知识点【函数的值域与最值】 高一数学重要知识点【函数的解析式与定义域】

点击访问更多木玛升学网的 学习资料资讯

上一条: 高一数学重要知识点【函数的奇偶性】 下一条: 高一数学重要知识点【函数的图象】

网友评论 共0条

暂无数据