学习方法 2021-08-05 318
【知识回顾】
1.二次根式:式子 ( ≥0)叫做二次根式。
2.最简二次根式:必须同时满足下列条件:
⑴被开方数中不含开方开的尽的因数或因式; ⑵被开方数中不含分母; ⑶分母中不含根式。
3.同类二次根式:
二次根式化成最简二次根式后,若被开方数相同,则这几个二次根式就是同类二次根式。
4.二次根式的性质:
(1)( )2= ( ≥0); (2)
5.二次根式的运算:
(1)因式的外移和内移:如果被开方数中有的因式能够开得尽方,那么,就可以用它的算术根代替而移到根号外面;如果被开方数是代数和的形式,那么先解因式,变形为积的形式,再移因式到根号外面,反之也可以将根号外面的正因式平方后移到根号里面.
(2)二次根式的加减法:先把二次根式化成最简二次根式再合并同类二次根式.
(3)二次根式的乘除法:二次根式相乘(除),将被开方数相乘(除),所得的积(商)仍作积(商)的被开方数并将运算结果化为最简二次根式.
= • (a≥0,b≥0); (b≥0,a>0).
(4)有理数的加法交换律、结合律,乘法交换律及结合律,乘法对加法的分配律以及多项式的乘法公式,都适用于二次根式的运算.
【典型例题】
1、概念与性质
例1下列各式1) ,
其中是二次根式的是_________(填序号).
例2、求下列二次根式中字母的取值范围
(1) ;(2)
例3、 在根式1) ,最简二次根式是( )
A.1) 2) B.3) 4) C.1) 3) D.1) 4)
例4、已知:
例5、 (2009龙岩)已知数a,b,若 =b-a,则 ( )
A. a>b B. a
2、二次根式的化简与计算
例1. 将 根号外的a移到根号内,得 ( )
A. ; B. - ; C. - ; D.
例2. 把(a-b)-1a-b 化成最简二次根式
例3、计算:
例4、先化简,再求值:
,其中a= ,b= .
例5、如图,实数 、 在数轴上的位置,化简 :
4、比较数值
(1)、根式变形法
当 时,①如果 ,则 ;②如果 ,则 。
例1、比较 与 的大小。
(2)、平方法
当 时,①如果 ,则 ;②如果 ,则 。
例2、比较 与 的大小。
(3)、分母有理化法
通过分母有理化,利用分子的大小来比较。
例3、比较 与 的大小。
(4)、分子有理化法
通过分子有理化,利用分母的大小来比较。
例4、比较 与 的大小。
(5)、倒数法
例5、比较 与 的大小。
(6)、媒介传递法
适当选择介于两个数之间的媒介值,利用传递性进行比较。
例6、比较 与 的大小。
(7)、作差比较法
在对两数比较大小时,经常运用如下性质:
① ;②
例7、比较 与 的大小。
(8)、求商比较法
它运用如下性质:当a>0,b>0时,则:
① ; ②
例8、比较 与 的大小。
5、规律性问题
例1. 观察下列各式及其验证过程:
, 验证: ;
验证: .
(1)按照上述两个等式及其验证过程的基本思路,猜想 的变形结果,并进行验证;
(2)针对上述各式反映的规律,写出用n(n≥2,且n是整数)表示的等式,并给出验证过程.
文章来源于网络,如有版权问题请联系我们删除!
推荐阅读 新人教版初二数学下册知识点 初二数学下册知识点归纳2017 初二数学下册知识点总结归纳 初二下册数学菱形知识点 初二下册数学知识点 苏教版初二下册数学知识点
点击访问更多木玛升学网的 学习方法资讯
上一条: 初二下册历史知识点总结浙教版 下一条: 初二下册数学菱形知识点
暂无数据