苏科版初三下册数学知识点总结

学习方法 2021-08-20 307

第二十六章 二次函数
  26.1 二次函数及其图像
  二次函数(quadratic function)是指未知数的次数为二次的多项式函数。二次函数可以表示为f(x)=ax^2+bx+c(a不为0)。其图像是一条主轴平行于y轴的抛物线。
  一般的,自变量x和因变量y之间存在如下关系:
  一般式
  y=ax∧2;+bx+c(a≠0,a、b、c为常数),顶点坐标为(-b/2a,-(4ac-b∧2)/4a) ;
  顶点式
  y=a(x+m)∧2+k(a≠0,a、m、k为常数)或y=a(x-h)∧2+k(a≠0,a、h、k为常数),顶点坐标为(-m,k)对称轴为x=-m,顶点的位置特征和图像的开口方向与函数y=ax∧2的图像相同,有时题目会指出让你用配方法把一般式化成顶点式;
  交点式
  y=a(x-x1)(x-x2) [仅限于与x轴有交点A(x1,0)和 B(x2,0)的抛物线] ;
  重要概念:a,b,c为常数,a≠0,且a决定函数的开口方向,a>0时,开口方向向上,a<0时,开口方向向下。a的绝对值还可以决定开口大小,a的绝对值越大开口就越小,a的绝对值越小开口就越大。
轴对称
  1.抛物线是轴对称图形。对称轴为直线x = -b/2a。
  对称轴与抛物线的交点为抛物线的顶点P。
  特别地,当b=0时,抛物线的对称轴是y轴(即直线x=0)
  顶点
  2.抛物线有一个顶点P,坐标为P ( -b/2a ,4ac-b^2;)/4a )
  当-b/2a=0时,P在y轴上;当Δ= b^2;-4ac=0时,P在x轴上。
  开口
  3.二次项系数a决定抛物线的开口方向和大小。
  当a>0时,抛物线向上开口;当a<0时,抛物线向下开口。
  |a|越大,则抛物线的开口越小。
  决定对称轴位置的因素
  4.一次项系数b和二次项系数a共同决定对称轴的位置。
  当a与b同号时(即ab>0),对称轴在y轴左; 因为若对称轴在左边则对称轴小于0,也就是- b/2a<0,所以b/2a要大于0,所以a、b要同号
  当a与b异号时(即ab<0),对称轴在y轴右。因为对称轴在右边则对称轴要大于0,也就是- b/2a>0, 所以b/2a要小于0,所以a、b要异号
  可简单记忆为左同右异,即当a与b同号时(即ab>0),对称轴在y轴左;当a与b异号时(即ab< 0 ),对称轴在y轴右。
  事实上,b有其自身的几何意义:抛物线与y轴的交点处的该抛物线切线的函数解析式(一次函数)的斜率k的值。可通过对二次函数求导得到。
  决定抛物线与y轴交点的因素
  5.常数项c决定抛物线与y轴交点。
  抛物线与y轴交于(0,c)
  抛物线与x轴交点个数
  6.抛物线与x轴交点个数
  Δ= b^2-4ac>0时,抛物线与x轴有2个交点。
  Δ= b^2-4ac=0时,抛物线与x轴有1个交点。
  _______
  Δ= b^2-4ac<0时,抛物线与x轴没有交点。X的取值是虚数(x= -b&plun;√b^2-4ac 的值的相反数,乘上虚数i,整个式子除以2a)
  当a>0时,函数在x= -b/2a处取得最小值f(-b/2a)=4ac-b2/4a;在{x|x<-b/2a}上是减函数,在
  {x|x>-b/2a}上是增函数;抛物线的开口向上;函数的值域是{y|y≥4ac-b^2/4a}相反不变
  当b=0时,抛物线的对称轴是y轴,这时,函数是偶函数,解析式变形为y=ax^2+c(a≠0)
  特殊值的形式
  7.特殊值的形式
  ①当x=1时 y=a+b+c
  ②当x=-1时 y=a-b+c
  ③当x=2时 y=4a+2b+c
  ④当x=-2时 y=4a-2b+c
  二次函数的性质
  8.定义域:R
  值域:(对应解析式,且只讨论a大于0的情况,a小于0的情况请读者自行推断)①[(4ac-b^2)/4a,
  正无穷);②[t,正无穷)
  奇偶性:当b=0时为偶函数,当b≠0时为非奇非偶函数。
  周期性:无
  解析式:
  ①y=ax^2+bx+c[一般式]
  ⑴a≠0
  ⑵a>0,则抛物线开口朝上;a<0,则抛物线开口朝下;
  ⑶极值点:(-b/2a,(4ac-b^2)/4a);
  ⑷Δ=b^2-4ac,
  Δ>0,图象与x轴交于两点:
  ([-b-√Δ]/2a,0)和([-b+√Δ]/2a,0);
  Δ=0,图象与x轴交于一点:
  (-b/2a,0);
  Δ<0,图象与x轴无交点;
  ②y=a(x-h)^2+k[顶点式]
  此时,对应极值点为(h,k),其中h=-b/2a,k=(4ac-b^2)/4a;
  ③y=a(x-x1)(x-x2)[交点式(双根式)](a≠0)
  对称轴X=(X1+X2)/2 当a>0 且X≧(X1+X2)/2时,Y随X的增大而增大,当a>0且X≦(X1+X2)/2时Y随X
  的增大而减小
  此时,x1、x2即为函数与X轴的两个交点,将X、Y代入即可求出解析式(一般与一元二次方程连
  用)。
  交点式是Y=A(X-X1)(X-X2) 知道两个x轴交点和另一个点坐标设交点式。两交点X值就是相应X1 X2值。
  26.2 用函数观点看一元二次方程
  1. 如果抛物线 与x轴有公共点,公共点的横坐标是 ,那么当 时,函数的值是0,因此 就是方程的一个根。
  2. 二次函数的图象与x轴的位置关系有三种:没有公共点,有一个公共点,有两个公共点。这对应着一元二次方程根的三种情况:没有实数根,有两个相等的实数根,有两个不等的实数根。
  26.3 实际问题与二次函数
  在日常生活、生产和科研中,求使材料最省、时间最少、效率等问题,有些可归结为求二次函数的值或最小值。

文章来源于网络,如有版权问题请联系我们删除!

推荐阅读 初三下册数学知识点总结苏科版 (苏科版)初三下册数学知识点总结 初三下册数学知识点总结苏科版2017 初三物理下册知识点总结苏科版 初⼀下册数学知识点总结归纳(苏科版) 初三下册数学知识点苏科版

点击访问更多木玛升学网的 学习方法资讯

上一条: 苏科版初三数学知识点归纳 下一条: 苏科版初三下册物理知识点

网友评论 共0条

暂无数据