七年级数学下册知识总结

学习方法 2021-08-09 379

【篇一】七年级数学下册知识总结

  1、整式的乘除的公式运用(六条)及逆运用(数的计算)。

  (1)an·am(2)(am)n=(3)(ab)n=4)am÷an(5)a0(a≠0)(6)a-p==

  2、单项式与单项式、多项式相乘的法则。

  3、整式的乘法公式(两条)。

  平方差公式:(a+b)(a-b)=

  完全平方公式:(a+b)2(a-b)2

  常用公式:(x+m)(x+n)=

  4、单项式除以单项式,多项式除以单项式(转换单项式除以单项式)。

  5、互为余角和互为补角和

  6、两直线平行的条件:(角的关系线的平行)

  ①相等,两直线平行;

  ②相等,两直线平行;

  ③互补,两直线平行.

  7、平行线的性质:两直线平行。(线的平行

  8、能判别变量中的自变量和因变量,会列列关系式(因变量=自变量与常量的关系)

  9、变量中的图象法,注意:(1)横、纵坐标的对象。(2)起点、终点不同表示什么意义(3)图象交点表示什么意义(4)会求平均值。

  10、三角形

  (1)三边关系:角的关系)

  (2)内角关系:

  (3)三角形的三条重要线段:

  (4)三角形全等的判别方法:(注意:公共边、边的公共部分对顶角、公共角、角的公共部分)

  (5)全等三角形的性质:

  (6)等腰三角形:(a)知边求边、周长方法(b)知角求角方法(c)三线合一:

  (7)等边三角形:

  11、会判轴对称图形,会根据画对称图形,(或在方格中画)

  12、常见的轴对称图形有:

  13、(1)等腰三角形:对称轴,性质

  (2)线段:对称轴,性质

  (3)角:对称轴,性质

  14、尺规作图:(1)作一线段等已知线段(2)作角已知角(3)作线段垂直平分线

  (4)作角的平分线(5)作三角形

  15、事件的分类:,会求各种事件的概率

  (1)摸球:P(摸某种球)=

  (2)摸牌:P(摸某种牌)=

  (3)转盘:P(指向某个区域)=

  (4)抛:P(抛出某个点数)=

  (5)方格(面积):P(停留某个区域)=

  16、必然事件不可能事件,不确定事件

  17、方法归纳:(1)求边相等可以利用

  (2)求角相等可以利用。

  (3)计算简便可以利用。

  18、注意复习:合并同类项的法则,科学记数法,解一元一次方程,绝对值。

  

【篇二】七年级数学下册知识总结

  不等式与不等式组

  1.不等式的解集:一个含有未知数的不等式的所有解,组成这个不等式的解集。

  2.一元一次不等式:不等式的左、右两边都是整式,只有一个未知数,并且未知数的次数是1,像这样的不等式,叫做一元一次不等式。

  3.一元一次不等式组:一般地,关于同一未知数的几个一元一次不等式合在一起,就组成了一个一元一次不等式组。

  4.一元一次不等式组的解集:一元一次不等式组中各个不等式的解集的公共部分,叫做这个一元一次不等式组的解集。

  5.不等式的性质:

  不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变。

  不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变。

  不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变。

  点、线、面、体知识点

  1.几何图形的组成

  点:线和线相交的地方是点,它是几何图形中最基本的图形。

  线:面和面相交的地方是线,分为直线和曲线。

  面:包围着体的是面,分为平面和曲面。

  体:几何体也简称体。

  2.点动成线,线动成面,面动成体。

  点、直线、射线和线段的表示

  在几何里,我们常用字母表示图形。

  一个点可以用一个大写字母表示。

  一条直线可以用一个小写字母表示。

  一条射线可以用端点和射线上另一点来表示。

  一条线段可用它的端点的两个大写字母来表示。

  注意:

  (1)表示点、直线、射线、线段时,都要在字母前面注明点、直线、射线、线段。

  (2)直线和射线无长度,线段有长度。

  (3)直线无端点,射线有一个端点,线段有两个端点。

  (4)点和直线的位置关系有线面两种:

  ①点在直线上,或者说直线经过这个点。

  ②点在直线外,或者说直线不经过这个点。

  

【篇三】七年级数学下册知识总结

  相交线与平行线知识要点

  1、在同一平面内,两条直线的位置关系有两种:相交和平行,垂直是相交的一种特殊情况。

  2、在同一平面内,不相交的两条直线叫平行线。如果两条直线只有一个公共点,称这两条直线相交;如果两条直线没有公共点,称这两条直线平行。

  3、两条直线相交所构成的四个角中,有公共顶点且有一条公共边的两个角是

  邻补角。邻补角的性质:邻补角互补。如图1所示,与互为邻补角,

  与互为邻补角。+=180°;+=180°;+=180°;+=180°。

  4、两条直线相交所构成的四个角中,一个角的两边分别是另一个角的两边的反向延长线,这样的两个角互为对顶角。对顶角的性质:对顶角相等。如图1所示,与互为对顶角。=;=。

  5、两条直线相交所成的角中,如果有一个是直角或90°时,称这两条直线互相垂直,

  其中一条叫做另一条的垂线。如图2所示,当=90°时,⊥。

  垂线的性质:

  性质1:过一点有且只有一条直线与已知直线垂直。

  性质2:连接直线外一点与直线上各点的所有线段中,垂线段最短。

  性质3:如图2所示,当a⊥b时,====90°。

  点到直线的距离:直线外一点到这条直线的垂线段的长度叫点到直线的距离。

  6、同位角、内错角、同旁内角基本特征:

  ①在两条直线(被截线)的同一方,都在第三条直线(截线)的同一侧,这样

  的两个角叫同位角。图3中,共有对同位角:与是同位角;

  与是同位角;与是同位角;与是同位角。

  ②在两条直线(被截线)之间,并且在第三条直线(截线)的两侧,这样的两个角叫内错角。图3中,共有对内错角:与是内错角;与是内错角。

  ③在两条直线(被截线)的之间,都在第三条直线(截线)的同一旁,这样的两个角叫同旁内角。图3中,共有对同旁内角:与是同旁内角;与是同旁内角。

  7、平行公理:经过直线外一点有且只有一条直线与已知直线平行。

  平行公理的推论:如果两条直线都与第三条直线平行,那么这两条直线也互相平行。

  平行线的性质:

  性质1:两直线平行,同位角相等。如图4所示,如果a∥b,则=;=;=;=。

  性质2:两直线平行,内错角相等。如图4所示,如果a∥b,则=;=。

  性质3:两直线平行,同旁内角互补。如图4所示,如果a∥b,则+=180°;+=180°。

  性质4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。

  8、平行线的判定:

  判定1:同位角相等,两直线平行。如图5所示,如果=

  或=或=或=,则a∥b。

  判定2:内错角相等,两直线平行。如图5所示,如果=或=,则a∥b。

  判定3:同旁内角互补,两直线平行。如图5所示,如果+=180°;

  +=180°,则a∥b。

  判定4:平行于同一条直线的两条直线互相平行。如果a∥b,a∥c,则∥。

  9、判断一件事情的语句叫命题。命题由题设和结论两部分组成,有真命题和假命题之分。如果题设成立,那么结论一定成立,这样的命题叫真命题;如果题设成立,那么结论不一定成立,这样的命题叫假命题。真命题的正确性是经过推理证实的,这样的真命题叫定理,它可以作为继续推理的依据。

  10、平移:在平面内,将一个图形沿某个方向移动一定的距离,图形的这种移动叫做平移变换,简称平移。

  平移后,新图形与原图形的形状和大小完全相同。平移后得到的新图形中每一点,都是由原图形中的某一点移动后得到的,这样的两个点叫做对应点。

  平移性质:平移前后两个图形中①对应点的连线平行且相等;②对应线段相等;③对应角相等。

文章来源于网络,如有版权问题请联系我们删除!

推荐阅读 新⼈教版七年级数学知识点总结(下册) 道德与法治七年级下册知识点总结 七年级下册数学知识点梳理苏科版 (2017)七年级下册英语知识点总结⼈教版 ⼈教版七年级下册历史知识点总结 七年级下册历史知识点归纳总结

点击访问更多木玛升学网的 学习方法资讯

上一条: 七年级上册语文复资料新人教版 下一条: 七年级探索月球奥秘作文700字

网友评论 共0条

暂无数据